

Fifth Semester B.E. Degree Examination, Dec. 2013/Jan. 2014 Formal Languages and Automata Theory

Time: 3 hrs. Max. Marks:100

Note: Answer FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. Define DFA. Mention the difference between DFA and NFA.

(04 Marks)

- b. Design DFA for the following language over $\Sigma = \{a, b\}$
 - i) The set of strings containing substring abb
 - ii) The set of strings with exactly three a's
 - iii) L = $\{awa \mid w \in (a+b)^*\}$.

(10 Marks)

- C. Design NFA or ∈ NFA for the following languages
 - i) abc, abd, aacd $\{ \sum = \{a, b, c, d\} \}$
 - ii) $\{ab, abc\}$ $\{\sum = \{a, b, c\}\}.$

(06 Marks)

2 a. Consider the following \in - NFA.

Fig. Q2(a)

- i) Compute ECLOSURE of each state
- ii) Convert above \in NFA to DFA.

(08 Marks)

b. Obtain regular expression for the following DFA by state elimination methods. (07 Marks)

Fig. Q2(b)

- c. Write regular expression for the following languages over $\Sigma = \{a, b\}$
 - $L = \{w \mid |w| \mod 3 = 0\}$
 - $L = \{a^n b^m \mid n \ge 0, m \ge 0, (m + n) \text{ is even}\}\$

$$L = \{a^n b^{2n} \mid n \ge 0\}.$$

(05 Marks)

3 a. State and prove pumping lemma theorem for regular languages.

- (08 Marks)
- b. Show that the following language is not regular $L = \{a^n b^n \mid n \ge 0\}$.
- (07 Marks)
- c. Using table filling algorithm show that the language accepted by the following two DFAs are same. (05 Marks)

Fig. Q3(c) 1 of 2

- 4 a. Define CFG. Obtain CFG for the following:
 - i) $L = \{a^n b^{2n} \mid n \ge 0\}$
 - ii) $L = \{a^n b^{n-3} \mid n \ge 3\}$
 - iii) For regular expression (a + b).

(07 Marks)

- b. Consider the grammar G with following productions $E \rightarrow +EE \mid *EE \mid -EE \mid x \mid y$ Find LMD, RMD and write parse tree for the string +*-xyxy. (06 Marks)
- c. What is ambiguous grammar? Show that the following grammar is ambiguous on the string ibtibtaea.

$$S \rightarrow iCtS \mid iCtSeS \mid a$$

 $C \rightarrow b$.

(07 Marks)

PART - B

5 a. Describe the languages accepted by PDA.

(04 Marks)

- b. Construct a PDA that accepts the following: $L = \{w \mid w \in (a+b)^* \text{ and } N_a(w) = N_b(w)\}$, write the instantaneous description for the string abba.
- c. Convert the following CFG to PDA that accept the same language by empty stack.

$$S \rightarrow aABC$$
, $A \rightarrow aB|a$, $B \rightarrow bA|b$, $C \rightarrow a$.

(06 Marks)

6 a. What are useless symbols? Eliminate useless symbols from the following grammar:

$$S \rightarrow AB \mid CA, A \rightarrow a, B \rightarrow BC \mid AB, C \rightarrow aB \mid b.$$

(07 Marks)

b. What are unit production? Eliminate unit productions from the following grammar:

$$S \rightarrow Aa|B, B \rightarrow A|bb, A \rightarrow a|bc|B.$$

(05 Marks)

c. What is CNF? Convert the following grammar into CNF

$$S \rightarrow aAD$$
, $A \rightarrow aB|bAB$, $B \rightarrow b$, $D \rightarrow d$.

(08 Marks)

7 a. Explain with diagram, the working of a Turing machine and multitape Turing machine.

(08 Marks)

- b. Design a Turing machine that accepts the language. $L = \{a^nb^n \mid n \ge 1\}$. Also write the transition diagram and instantaneous description for the string aabb. (12 Marks)
- **8** Write short notes on the following:
 - a. Multi tape Turing M/C
 - b. Halting problem of TM
 - c. Recursive language
 - d. Post's correspondence problem.

(20 Marks)

* * * * *